Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries
نویسندگان
چکیده
Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4-8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway. A coconut shell derived ultramicroporous carbon-sulphur composite cathode has been used as reaction directing template for the sulphur. The lithiation/delithiation and capacity fading mechanism of microporous carbon confined sulphur composite was revealed by analyzing the subsurface using X-ray photoelectron spectroscopy. No higher-order polysulphides were detected in the electrolyte, on the surface, and in the subsurface of the cathode composite. The altered reaction pathway is reflected by a single-step profile in the discharge/charge of a lithium-sulphur cell.
منابع مشابه
Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries
Rechargeable lithium-sulfur (Li-S) batteries are receiving ever-increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S-cathodes include low electrical conductivity of S and sulfides, pre...
متن کاملFirst-Principles Study of Redox End Members in Lithium−Sulfur Batteries
The properties of the solid-phase redox end members, α-S, β-S, Li2S, and Li2S2, are expected to strongly influence the performance of lithium−sulfur batteries. Nevertheless, the fundamental thermodynamic and electronic properties of these phases remain poorly understood. From a computational standpoint, the absence of these data can be explained by the omission of long-ranged van der Waals inte...
متن کاملA membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage†
Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on ...
متن کاملRevealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement
Current concerns of the pressing environmental pollution issues and limited fossil energy resources have increased the R&D interest and investment in clean energy technologies. LIBs, as commonly used clean energy storage devices, have transformed portable electronic devices and electric transportation greatly, but have limitations of high cost and relatively low specific energy [1]. Due to adva...
متن کاملIn situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015